Phonon-tunnelling dissipation in mechanical resonators
نویسندگان
چکیده
Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor.
منابع مشابه
Design strategies for controlling damping in micromechanical and nanomechanical resonators
Damping is a critical design parameter for miniaturized mechanical resonators used in microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), optomechanical systems, and atomic force microscopy for a large and diverse set of applications ranging from sensing, timing, and signal processing to precision measurements for fundamental studies of materials science and quantum mec...
متن کاملPhonon Tunneling Loss Solver for Micro- and Nanomechanical Resonators
Microand nanoscale mechanical resonators have emerged as ubiquitous devices for application in a wide range of technical disciplines including communications, sensing, metrology, and fundamental scientific endeavors. In many instances the performance of these devices is limited by the deleterious effects of mechanical damping. To further compound this limitation, the quantitative understanding ...
متن کاملDissipation induced by phonon elastic scattering in crystals
We demonstrate that the phonon elastic scattering leads to a dominant dissipation in crystals at low temperature. The two-level systems (TLSs) should be responsible for the elastic scattering, whereas the dissipation induced by static-point defects (SPDs) can not be neglected. One purpose of this work is to show how the energy splitting distribution of the TLS ensemble affects the dissipation. ...
متن کاملQuantum friction of micromechanical resonators at low temperatures.
Dissipation of micro- and nanoscale mechanical structures is dominated by quantum-mechanical tunneling of two-level defects intrinsically present in the system. We find that at high frequencies-usually, for smaller, micron-scale structures-a novel mechanism of phonon pumping of two-level defects gives rise to weakly temperature-dependent internal friction, Q-1, concomitant to the effects observ...
متن کاملEvidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond resonators at millikelvin temperatures
We report millikelvin-temperature measurements of dissipation and frequency shift in megahertzrange resonators fabricated from ultra-nanocrystalline diamond. Frequency shift δf/f0 and dissipation Q−1 demonstrate temperature dependence in the millikelvin range similar to the glass model of two level systems. The logarithmic temperature dependence of δf/f0 is in good agreement with the glass mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011